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McKean-Vlasov SDEs

• P(Rd)-all probability measures on Rd.

• For p > 0, let

Pp(Rd) = {µ ∈P(Rd), µ(| · |p) :=

∫
Rd
|x|pµ(dx) <∞}.

• Wp-Wasserstein distance:

Wp(µ, ν) = inf
π∈C(µ,ν)

(∫
Rd×Rd

|x−y|pπ(dx,dy)
) 1

1∨p
, µ, ν ∈Pp(Rd)

C(µ, ν)-all couplings of µ and ν.

• DDSDEs

dXt = bt(Xt,LXt)dt+ σt(Xt,LXt)dWt, t ≥ 0,
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McKean-Vlasov SDEs

• Existence and Uniqueness. M. Röckner, X. Zhang; G, Zhao; D.

Lacker; P.-E. Chaudru de Raynal; Y. S. Mishura, A. Yu Vereten-

nikov; J. Bao, X. Huang, F.-Y. Wang and so on.

• Distribution property (Harnack inequality, Bismut formula, Esti-

mate of L-derivative), C. Deng; Y. Song; P. Ren; F.-Y. Wang;

• Order preservation: X. Huang, Feng-Yu Wang, Chenggui Yuan.

• Correspondence between nonlinear Fokker-Planck-Kolmogorov e-

quations and DDSDEs: V. Barbu, M. Röckner;

• Ergodicity: W. Liu, L. Wu; J. Wang; P. Ren, F.-Y. Wang;

• Large deviation: W. Liu, Y. Song, J. Zhai; T. Zhang;

• Numerical scheme: X. Zhang; J. Bao.

• Phase transform: M.-F. Chen; S.-Q. Zhang.
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Mean field method in Markov Chain

• Birth and death process,

qi,i+1 = bi, i ≥ 0, qi,i−1 = ai, i ≥ 1, qi,i = −(bi + ai)

• Generator

Ωf(i) = bi(f(i+ 1)− f(i))− ai(f(i)− f(i− 1))

• Invariant probability measure

µk =

∏k−1
i=0 bi∏k
i=1 ai

µ0 =: Zkµ0,

∞∑
k=0

Zk <∞.

• Generator

Ω̃tf(i) = bi(f(i+1)−f(i))−ai(f(i)−f(i−1))+E(Xt)(f(i+1)−f(i))

• b̃i = bi + µ̃(·), ãi = ai.

µ̃k =

∏k−1
i=0 (bi + µ̃(·))∏k

i=1 ai
µ0 =: Z̃kµ0,

∞∑
k=0

Z̃k <∞.
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SDEs with Hölder continuous and distribution
dependent diffusion

• Consider one-dimensional SDE

dXt = bt(Xt,LXt)dt+ σt(Xt,LXt)dWt, t ≥ 0, (2.1)

• For some θ ∈ [ 1
2
, 1),

|σ(x, µ)− σ(y, ν)| ≤ K0|x− y|θ +K1W1(µ, ν)

• Note that ∫ ε

ε
e

1

x
= 1

• Yamada-Watanabe approximation

ψε(x) ≤ 2

x
1[ ε

e
,ε],

∫ ε

ε
e

ψε(x) = 1, Vε(x) =

∫ |x|
0

∫ y

0

ψε(z)dz.

• Ito’s formula

Vε(Xt − Yt)

• Difficulty:

|σt(Xt,LXt)− σt(Yt,LYt)|2

|Xt − Yt|
1|Xt−Yt|∈[ ε

e
,ε] →

K2
1W1(LXt ,LYt)

2

|Xt − Yt|
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Well-posedness

• Consider

dXt = (α−δXt)dt+h(E(Xt))dt+σt(Xt,E(Xt))dWt, t ≥ 0, (2.2)

Definition
A continuous adapted process (Xt)t≥0 is called a strong solution to (2.2)

if E(Xt) is continuous in t, and P-a.s.

Xs = X0 +

∫ s

0

(α− δXt)dt+

∫ s

0

h(E(Xt))dt+

∫ s

0

σ(Xt,E(Xt))dWt, s ≥ 0.

We make the following assumptions.

(C) σ is measurable. There exists a constant L > 0 and θ ∈ [ 1
2
, 1] such

that

|h(y)− h(ȳ)| ≤ L|y − ȳ|, |σ(x, y)− σ(x̄, y)| ≤ L|x− x̄|θ, x, x̄, y, ȳ ∈ R,

and

|σ(0, y)| ≤ L(1 + |y|), y ∈ R.



Mean Field
CKLS
Model

Xing Huang

McKean-
Vlasov
SDEs

McKean-
Vlasov
SDEs

Mean field
CKLS
model

McKean-
Vlasov
SDEs with
Hölder
Continuous
drift

Idea of
Proof

Well-posedness

Theorem

Assume (C). Then for any X0 ∈ L1(Ω,F0,P), (2.2) has a unique strong

solution Xt with initial value X0.

Proof.

For any Γ ∈ C([0, T ];R), define σΓ
t (x) = σ(x,Γt), b

Γ
t (x) = α−δx+h(Γt)

and

dXt = bΓt (Xt)dt+ σΓ
t (Xt)dWt. (2.3)

Define Φγ : C([0, T ];R)→ C([0, T ];R) as

Φγt (Γ) = E(Xγ
t (Γ)), t ∈ [0, T ].

Define E0 = {Γ ∈ C([0, T ],R),Γ0 = E(X0)}, equipped with

dλ(Γ, Γ̃) = sup
t∈[0,T ]

e−λt|Γt − Γ̃t|, Γ, Γ̃ ∈ E0.

�
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Mean field CKLS model

• Consider

dXt = (α− δXt)dt+ γE(Xt)dt+ |Xt|θdWt. (3.1)

• For any µ0 ∈P1, let P ∗t µ0 = LX
µ0
t

. Define

Ptf(µ0) =

∫
R
f(x)(P ∗t µ0)(dx), µ0 ∈P1, t ≥ 0, f ∈ Bb([0,∞)).

• Intrinsic distance

ρ(s, t) =

∫ s∨t

s∧t

dr

rθ
=

(s ∨ t)1−θ − (s ∧ t)1−θ

1− θ , s, t ∈ [0,∞). (3.2)

Define

W2,ρ(µ, ν)2 = inf
π∈C(µ,ν)

∫
R×R

ρ(x, y)2π(dx, dy)
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Log-Harnack inequality

Theorem

Assume δ > 0 and γ ≥ 0. Then the following assertions hold.

(1) Assume 1
2
< θ < 1 and α ≥ θ

2
. For any f ∈ B+

b ([0,∞)) with

f > 0, µ0, ν0 ∈ P+
1 with max(µ0((·)1−2θ), ν0((·)1−2θ)) < ∞, the

log-Harnack inequality holds, i.e.

PT log f(µ0) ≤ logPT f(ν0) +
(1− θ)(δ − θ

2
)W2,ρ(µ0, ν0)2

(e2(1−θ)(δ− θ
2

)T − 1)

+
1

2
γ2ΓW1(µ0, ν0)2

for some constant Γ depending on T ,γ,δ, α, θ µ0(·), µ0((·)1−2θ),

ν0(·), ν0((·)1−2θ).
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Log-Harnack inequality

Theorem

(2) Assume θ = 1
2

and α > 1
2

. Then for any f ∈ B+
b ([0,∞)) with

f > 0, µ0, ν0 ∈ P+
1 satisfying max(µ0(| log(·)|), ν0(| log(·)|)) < ∞,

the log-Harnack inequality holds, i.e.

PT log f(µ0) ≤ logPT f(ν0) +
1
2
(δ − 1

4
)W2,ρ(µ0, ν0)2

1
2
(e(δ− 1

4
)T − 1)

+
1

2
γ2Γ̄W1(µ0, ν0)2.

for some constant Γ̄ depending on T ,γ,δ, α, θ µ0(·), µ0(| log(·)|),

ν0(·), ν0(| log(·)|).
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Nonnegative Solution

Lemma

Assume α, γ ≥ 0, δ ∈ R. Let Xt be the solution to (3.1) with F0-

measurable non-negative initial value X0. Then P-a.s. Xt ≥ 0, t ≥ 0

Proof.
Define (See X. Mao, T. Aubrey, C. Yuan.)

V̄ε(x) =

∫ x−

0

∫ y

0

ψε(z)dzdy.

It is not difficult to see that

V 0
ε (x) = 0, x ≥ −ε/e, x− − ε ≤ V 0

ε (x) ≤ x−, x ∈ R, (3.3)

(V 0
ε )′(x) ∈ [−1, 0], x ≤ −ε/e, (V 0

ε )′(x) = 0, x ≥ −ε/e, (3.4)

0 ≤ (V 0
ε )′′(x) ≤ 2/x−1[ε/e,ε](x

−), x ∈ R. (3.5)
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Strictly Positive Solution

Let ζ ∈ C([0,∞); [0,∞)). For α, γ ≥ 0, δ ∈ R, consider

dXt = (α− δXt)dt+ γζtdt+Xθ
t dWt. (3.6)

Repeating the proof of this Lemma by replacing E(Xt) with ζt, (3.6) has

a unique nonnegative solution Xζ
t with nonnegative initial value.

Lemma

Assume α, γ ≥ 0, δ ∈ R.

(1) Assume θ ∈ ( 1
2
, 1). Then for any X0 > 0, P-a.s. Xt > 0, t ≥ 0.

If moreover δ > 0 and EX0 + EX1−2θ
0 <∞, it holds

E
∫ T

0

(Xζ
t )−2θdt ≤ Γ0.

(2) Assume θ = 1
2

and α > 1
2

, for any X0 > 0, P-a.s. Xt > 0, t ≥ 0.

If moreover, δ > 0 and EX0 + E| log(X0)| <∞, we obtain

E
∫ T

0

(Xζ
t )−1dt ≤ Γ̄0.
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Strictly Positive Solution

Proof.
For any n ≥ 1, define

τn = inf{t ≥ 0 : Xt ≤
1

n
} ∧ inf{t ≥ 0 : Xt ≥ n}

τn is increasing in n and it is sufficient to prove limn→∞ τn =∞.

(1)

V (x) = x+
1

2θ − 1
x1−2θ − (1 +

1

2θ − 1
), x > 0.

(2)

V̄ (x) = x− log x− 1, x > 0.

�
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Log-Harnack inequality for classical SDEs

Consider SDE

dXt = αtdt− δXtdt+Xθ
t dWt, (3.7)

here α : [0,∞) → R. Let Xα,µ
t be the solution to (3.7) from initial

distribution µ and define

Pαt f(x) = Ef(Xα,δx
t ), t ≥ 0, f ∈ Bb(R).

By repeating the proof of [10, Theorem 1.2], we can get

Lemma

Let 1
2
≤ θ < 1 and αt ≥ θ

2
, t ≥ 0. Then for any x, y ∈ [0,∞), we have

PαT log f(y) ≤ logPαT f(x) +
(1− θ)(δ − θ

2
)ρ(x, y)2

(e2(1−θ)(δ− θ
2

)T − 1)
.

Therefore, it holds

E(log f)(Xµ0
T ) ≤ logEf(Xν0

T ) +
(1− θ)(δ − θ

2
)W2,ρ(µ0, ν0)2

(e2(1−θ)(δ− θ
2

)T − 1)
, µ0, ν0 ∈P+

1 ,
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Exponential Ergodicity

Theorem

Assume δ > γ. Then (3.1) has a unique invariant probability measure µ

satisfying

W1(P ∗t µ0, µ) ≤ e−(δ−γ)tW1(µ0, µ), µ0 ∈P1.

Yamada-Watanabe approximation to get

E|Xs − Ys| ≤ e−(δ−γ)sE|X0 − Y0|.
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Idea of Proof-Log-Harnack inequality

• Let µt = P ∗t µ0, νt = P ∗t ν0. Consider

dXt = (α− δXt)dt+ γµt(·)dt+Xθ
t dWt.

We rewrite this equation as

dXt = (α− δXt)dt+ γνt(·)dt+Xθ
t dW̃t,

here

dW̃t = dWt +X−θt (γµt(·)− γνt(·)).

For any n ≥ 1, define

τn = inf{t ≥ 0 : Xt ≤
1

n
}.

Let

Rs = exp

{
−
∫ s

0

X−θt (γµt(·)− γνt(·))dWt

− 1

2

∫ s

0

|X−θt (γµt(·)− γνt(·))|2dt

}
, s ∈ [0, T ]
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Idea of Proof-Log-Harnack inequality

• For any n ≥ 1, (Rs∧τn)s∈[0,T ] is a martingale and Girsanov’s trans-

form yields that (W̃s∧τn)s∈[0,T ] is a one-dimensional Brownian mo-

tion under QnT = RT∧τnP. So, we arrive at

E(Rs∧τn log(Rs∧τn))

≤ 1

2
EQnT

∫ s

0

X−2θ
t |γµt(·)− γνt(·)|2dt

≤ 1

2
γ2(E|X0 − Y0|)2Γ̃.

By martingale convergence theorem and limn→∞ τn =∞, we have

ERs = 1 which implies that {Rs}s∈[0,T ] is a martingale. Moreover,

Fatou’s Lemma yields

E(Rs log(Rs)) ≤
1

2
γ2(E|X0 − Y0|)2Γ̃.
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Idea of Proof-Log Harnack inequality

• By coupling by change of measure for the classical SDE, there exists

{ξt}t∈[0,T ] and {Yt}t∈[0,T ], {W̄}t∈[0,T ] with W̄t = W̃t+
∫ t

0
ξsds such

that Q̄T = R̄TRTP is a probability measure, where

R̄t = exp

{
−
∫ t

0

ξsdW̃s −
1

2

∫ t

0

|ξs|2ds

}
, t ∈ [0, T ].

Moreover, it holds LYt |Q̄T = νt, t ∈ [0, T ] and Q̄T -a.s. Xt = Yt, t ∈
[0, T ] and

EQ̄T log(R̄T ) =
1

2
EQ̄T

∫ T

0

|ξs|2ds ≤
(1− θ)(δ − θ

2
)W2,ρ(µ0, ν0)2

(e2(1−θ)(δ− θ
2

)T − 1)
.

Noting that Q̄T -a.s. Xt = Yt, t ∈ [0, T ], we have

EQ̄T
∫ s

0

X−2θ
t |γµt(·)− γνt(·)|2dt =

1

2
EQ̄T

∫ s

0

Y −2θ
t |γµt(·)− γνt(·)|2dt.

So, we have

EQ̄T log(R̄TRT ) ≤ EQ̄T
∫ T

0

|ξs|2ds+EQ̄T
∫ s

0

Y −2θ
t |γµt(·)−γνt(·)|2dt.

So, we complete the proof.
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